Evolution of the energy spectrum among a large number of internal waves in the deep ocean

Ranis N. Ibragimov

Department of Mathematics International Research & Support Center for Applied Mathematical Modeling

New Mexico Institute of Mining & Technology

USA

Present research interests and experience

- Existence and uniqueness of solutions for nonlinear PDEs
- Numerical solutions of Boundary Value Problems
- Mathematical modeling
- Solitary waves in inhomogeneous medium
- Stability analysis of nonlinear PDEs (NS)
- Lie group analysis of ODEs and PDEs
- Geophysical Fluid Dynamics

Geophysical Fluid Dynamics

- The object: study of naturally occurring large-scale flows on the Earth
- Two features: rotation of the Earth;

Density at surface between $1000-1030 \frac{kg}{m^3}$

At great depths (5 km) can have

Set
$$\rho = \rho_0 + \rho' \qquad \rho' << \rho_0 \implies \rho \frac{\vec{Du}}{Dt} \approx \rho_0 \frac{\vec{Du}}{Dt}$$

Boussinesq Approximation

Internal Gravity Waves

Waves that exist in stratified fluids due to gravitational restoring forces

Wave propagating in 2D: $W = W_0 e^{i(kx + mz - \omega t)}$

$$\cos \alpha = \frac{k}{K}$$

Lines of constant phase

$$\omega^{2} = \frac{N^{2}k^{2} + f^{2}m^{2}}{k^{2} + m^{2}} = N^{2}\cos^{2}\alpha + f^{2}\sin^{2}\alpha \qquad N^{2} = -\frac{g}{\rho_{0}}\frac{d\overline{\rho}}{dz}$$

$$N^2 = -\frac{g}{\rho_0} \frac{d\rho}{dz}$$

ω function of direction K

and not of the magnitude K

$$\Leftrightarrow$$

sharp contrast

ω function of magnitude only for surface waves

$$|f| < |\omega| < |N|$$

Geophysical Fluid Dynamics (GFD) Internal waves (IWs) in GFD Generation Propagation Nonlinear interactions Dissipation Energy transfer in **GM** spectrum rate of ocean internal wave field mixing - Plays an important role in climate Describes internal wave field variability that is horizontally isotropic -- Most uncertain component of and vertically symmetric ocean General Circulation Model

Remarkable fact: GM has much the same shape in the ocean

Nonlinear wave interactions smooth out any spectral irregularity by redistributing energy within the spectrum

Resonant triads

- A resonant wave is a wave satisfying the dispersion relation and propagating at the frequency and the wave-number produced by two primary waves
- A triad of internal waves can interact resonantly among themselves if the linear dispersion relation satisfies

$$\overrightarrow{K}_1 \pm \overrightarrow{K}_2 \pm \overrightarrow{K}_0 = 0,$$

$$\omega_1 \pm \omega_2 \pm \omega_0 = 0$$

Previous studies

Analytic approach:

The energy distribution is well understood for the case of a single triad

Statistical approach and Numerical analysis

Do not explain the nature of nonlinear interactions.

 ω_5

Need a better model based on physics of IWs

Resonant interactions

$$\nabla^{2}\psi_{t} - g\rho_{x} - fv_{z} = J(\psi, \nabla^{2}\psi), \qquad u = \psi_{z}, \quad w = -\psi_{x}$$

$$v_{t} + f\psi_{z} = J(\psi, v), \qquad J(a,b) = a_{x}b_{z} - a_{z}b_{x}$$

$$\rho_{t} + \frac{N^{2}}{g}\psi_{x} = J(\psi, \rho). \qquad \rho = \rho(z) + \rho \qquad N^{2} = -\frac{g}{\rho_{0}}\frac{d\rho}{dz}$$
background density Buoyancy frequency

The advective term in the density equation is written in the linearized form:

$$w\frac{d\overline{\rho}}{dz} = -\rho_0 N^2 \frac{w'}{g}$$

 \Rightarrow the rate of change of the density in a point is only due to the vertical advection of the undisturbed density distribution $\rho(z)$

Look for solutions

$$(\psi, \nu, \rho) = \sum_{i} \varepsilon^{i} (\psi_{i}, \nu_{i}, \rho_{i})$$

$$\psi_1 = \sum_i A_i \frac{\omega_i}{k_i} \sin \theta_i \sin(m_i z),$$

$$\rho_1 = \frac{N^2}{g} \sum_{i} A_i \sin \theta_i \sin(m_i z)$$

$$v_1 = -f \sum_i A_i \frac{m_i}{k_i} \cos \theta_i \cos(m_i z)$$

$$\theta_i = k_i x - \omega_i t + \varphi_i$$

Dispersion relation

$$\omega_i^2 = \frac{N^2 k_i^2 + f^2 m_i^2}{k_i^2 + m_i^2}$$

The nonlinear interactions become evident only in the second order problem:

$$\frac{\partial^2}{\partial t^2} \nabla^2 \psi_2 + N^2 \frac{\partial^2 \psi_2}{\partial x^2} + f^2 \frac{\partial^2 \psi_2}{\partial z^2} = F_2(\psi_1, v_1, \rho_1)$$

Multiple time scale analysis: $A_i = A_i(\tau)$, $\tau = \varepsilon t$ - slow time scale

$$F_{2} = \frac{1}{4} \sum_{i} \sum_{j} A_{i} A_{j} \left[\sum_{l=1}^{4} S_{l} \right] - S_{r} \left(A_{i}, \omega_{i}, k_{i}, m_{i}, \tau \right)$$

$$\left(S_{i} = \pm \left[\frac{\omega_{i}\omega_{j}}{k_{i}k_{j}}\middle|\overrightarrow{k_{j}}\middle|^{2}\left(\omega_{i} \pm \omega_{j}\right) + N^{2}\frac{\omega_{i}}{k_{i}}\left(k_{i} \pm k_{j}\right) + f^{2}\left(m_{i} \pm m_{j}\right)\frac{\omega_{i}m_{j}}{k_{i}k_{j}}\right] \times \left(m_{i}k_{j} \pm m_{j}k_{i}\right)\cos\left(\theta_{i} \pm \theta_{j}\right)\sin\left(\left[m_{i} \pm m_{j}\right]z\right)$$

$$S_r = \sum_{i} \left[\frac{\omega_i^2}{k_i} |\overrightarrow{k_j}|^2 + N^2 k_i + f^2 \frac{m_i^2}{k_i} \right] \left(\frac{dA_i}{d\tau} \right) \cos \theta_i \sin(m_i z)$$

For resonant terms

$$2\sum_{i} \frac{\omega_{i}^{2}}{k_{i}} |\overrightarrow{k_{j}}|^{2} A_{i}' \cos \theta_{i} \sin(m_{i}z) =$$

$$= -\frac{1}{4} \sum_{i} \sum_{j} A_{i} A_{j} \left[\frac{\omega_{i} \omega_{j}}{k_{i} k_{j}} |\overrightarrow{k_{j}}|^{2} (\omega_{i} + \omega_{j}) + N^{2} \frac{\omega_{i}}{k_{i}} (k_{i} + k_{j}) + f^{2} (m_{i} + m_{j}) \frac{\omega_{i} m_{j}}{k_{i} k_{j}} \right] \times$$

$$(m_{i} k_{j} - m_{j} k_{i}) \cos(\theta_{i} + \theta_{j}) \sin([m_{i} + m_{j}]z)$$

Example: Two resonant triads

For this case,

$$\sum_{i=1}^{5} \frac{\omega_{i}^{2}}{k_{i}^{2}} |\vec{k}_{j}|^{2} A_{i}' \cos \theta_{i} \sin(m_{i}z) =$$

$$A_{1} A_{2} (B_{12} + B_{21}) \cos \theta_{3} \sin(m_{3}z) + A_{4} A_{5} (B_{45} + B_{54}) \cos \theta_{3} \sin(m_{3}z) +$$

$$A_{1} A_{3} (B_{13} + B_{31}) \cos \theta_{2} \sin(m_{2}z) + A_{2} A_{3} (B_{23} + B_{32}) \cos \theta_{1} \sin(m_{1}z) +$$

$$A_{3} A_{4} (B_{34} + B_{43}) \cos \theta_{5} \sin(m_{5}z) + A_{3} A_{5} (B_{35} + B_{53}) \cos \theta_{4} \sin(m_{4}z)$$

$$\left(B_{ij} = \frac{1}{2} \left[\frac{\omega_i \omega_j}{k_i k_j} |\overrightarrow{k_j}|^2 (\omega_i + \omega_j) + N^2 \frac{\omega_i}{k_j} (k_i + k_j) + f^2 (m_i + m_j) \frac{\omega_i m_j}{k_i k_j} \right] \times (m_i k_j - m_j k_i) \right)$$

Evolution equations

$$\frac{dA_1}{d\tau} = \gamma_{23}A_2A_3$$

$$\frac{dA_2}{d\tau} = \gamma_{13}A_1A_3$$

$$\frac{dA_3}{d\tau} = \gamma_{12}A_1A_2 + \gamma_{45}A_4A_5$$

$$\frac{dA_4}{d\tau} = \gamma_{35}A_3A_5$$

$$\frac{dA_5}{d\tau} = \gamma_{34}A_3A_4$$

$$\frac{dA_5}{d\tau} = \gamma_{34}A_3A_4$$

$$\gamma_{ij} = \frac{\left(B_{ij} + B_{ji}\right)k_l}{\left|\overrightarrow{k_l}\right|^2 \omega_l^2}$$

Two questions

Are resonant interactions in fact possible?

How do the wave amplitudes evolve in time?

Solutions to the resonance conditions

Sum reactions:

$$\vec{K}_1 + \vec{K}_2 = \vec{K}_0, \quad \omega_1 + \omega_2 = \omega_0$$

Given

The high frequency wave (ω_0, \vec{K}_0) is assumed to be known.

Synchronism condition:
$$h_s(x) \equiv \sqrt{\frac{\left(\frac{x}{y}\right)^2 + b^2}{\alpha^2 \left(\frac{x}{y}\right)^2 + 1}} + \sqrt{\frac{\left(\frac{1-x}{1-y}\right)^2 + b^2}{\alpha^2 \left(\frac{1-x}{1-y}\right)^2 + 1}} - \sqrt{\frac{1+b^2}{\alpha^2 + 1}} = 0$$

$$x = \frac{k_1}{k_0}$$
, $y = \frac{m_1}{m_0}$, $b^2 = \frac{f^2}{N^2 \alpha^2}$ $\alpha = \frac{k_0}{m_0}$ - aspect ratio

The idea is to treat y as known and see if we can solve for x.

at the given values of $n_0 = 1$, $n_1 = 2$, $n_1 = 4$ and $\omega_0 = \omega_{M_2} = 1.4 \times 10^{-4} \, s^{-1}$.

Solutions to the resonance conditions

<u>Difference reactions</u>: In this case wave 1 (one of the low frequency waves) is known, and we choose the mode number of wave 0, i.e., after switching the indices on waves 0 and 1, we have

$$\omega_1 - \omega_0 = \omega_2 \quad or \quad \omega_0 + \omega_2 = \omega_1$$
Given

Synchronism condition:

$$h_d(x) = \sqrt{\frac{\left(\frac{x}{y}\right)^2 + b^2}{\alpha^2 \left(\frac{x}{y}\right)^2 + 1}} - \sqrt{\frac{\left(\frac{x-1}{y-1}\right)^2 + b^2}{\alpha^2 \left(\frac{x-1}{y-1}\right)^2 + 1}} - \sqrt{\frac{1+b^2}{\alpha^2 + 1}} = 0$$

- [1] There may be as many as four solutions;
- [2] While we could assume $n_1 > 0$ for the sum reactions, this is not true for difference reactions \Rightarrow positive and negative values of n_1 must be considered.

Resonant curves (resonance occurs at roots of $h_d(x)$) for difference reactions, $\omega_0 - \omega_1 = \omega_2$ for $\chi = k_1/k_0$ at the given values of $n_0 = 2$, $n_0 = 10$, $n_1 = 1$

Resonant triad model

- Generates an arbitrary large number of resonant triads of IWs in (ω, n) space with frequencies spanning the range of possible frequencies;
- Generates the evolution equations for the amplitudes for each obtained resonant wave;
- Wave amplitudes are initialized on a chose of the initial energy spectrum;
- The obtained evolution equations to determine the temporal evolution of each wave are solved;
- The temporal evolution of energy distribution among the various possible wave numbers and frequencies based on the previous results is computed.

NOTE: The model can be used to determine the temporal evolution of an arbitrarily chosen initial energy spectrum.

Initial amplitudes expressed in terms of the GM spectrum:

$$A_{i}(0) = \left[\frac{4E_{i}(0)}{\left(N^{2} + f^{2} \frac{m_{i}^{2}}{k_{i}^{2}}\right)}\right]^{\frac{1}{2}} E_{i}(0) = E_{GM}(n; f + j\Delta\omega, f + (j-1)\Delta\omega) / r_{n}$$

 I_n - number of waves in each frequency band at given mode number.

$$E_{GM} = H^2 N_0 N E_0 B(\omega) H(n)$$

$$N(z) = N_0 e^{z/H}$$
, $N_0 = 5.2 \times 10^{-3} \, s^{-1}$, $H = 1.3 \, km$, $E_0 = 6 \times 10^{-5}$.

Represent the initial energy distribution of a given mode number n in each frequency band by

$$\int\limits_{f+(j-1)\Delta\omega}^{f+j\Delta\omega} E_{GM}(\omega;n)d\omega, \qquad j=1,...,s$$
 num

$$j = 1, ..., s$$

number of frequency bands

Schematic to illustrate the process of generation of resonant triads in (ω, n) – space. All triads are generated from initial base wave of frequency ω_0 . The level 0 triads are plotted by a solid red line. Level 1 triads are plotted by a blue line and Level 2 triads are plotted by green dots.

Two energy spectrums

Uniform spectrum at τ =0

Results

 Evolution of the wave's amplitudes to predict the evolution of the internal wave energy spectrum

Solve the system of 200 000 differential equations

Other results & Conclusions

- Evolution of the GM spectrum at different latitudes;
- Forced waves (energy inflow);
- Modified GM spectrum;
 - **GATE** (Global Atlantic Tropical Experiment, 1974) shows a prominent tidal peak at the tidal frequency
- Oscillatory nature of the model;
- The GM model represents the stable state